Titanium Dioxide (TiO$_2$) Nanoporous Surface Layer Removal
Cassie Carter, Black Hills State University
Advisors: Dr. Grant Crawford, Dr. Michael West

Introduction
- Nanostructured surfaces improve bone cell adhesion to orthopedic implants, thereby increasing their lifespan in the human body.
- TiO$_2$ nanotube surfaces highly encourage bone cell adhesion.
- However, the influence of nanostructure on the biological response mechanism is not well understood.

How can we understand the biological response mechanism?
- Transparent TiO$_2$ nanotubes may enable live-cell imaging of cell interaction with nanotubes.

How is transparency achieved?
- Physical vapor deposition (PVD) of a thin (500nm-1 μm) titanium film on glass substrates.

What is the problem?
- Often in the fabrication of transparent samples, a nanoporous surface layer remains; this layer is not representative of the nanotube layer, and it is the nanotube layer that is desired for study.

Project Objective
This research focuses on developing a repeatable method for removing nanoporous surface layers from TiO$_2$ nanotubes.

Experimental Procedure
1. Opaque titanium: cut and polish disks ½ in. in diameter, 2mm thick. Transparent titanium: PVD of titanium over glass cover slips.
2. Anodize titanium samples in a 2-electrode electrolytic cell where Ti acts as the anode.
 - Two electrolytes used; ethylene glycol with 0.15M NH4F with 2.5 wt.
 - % water and a 0.44 M H$_3$PO$_4$ aqueous solution with 0.15M NaF, both typically with a volume of 100mL.
3. Anodization voltage was typically 90V.
4. Nanopore removal methods
 - Longer anodization times
 - Two-step anodization
 - Etching by extended fluorine exposure
 - RF plasma etching
5. Use scanning electron microscopy to characterize surface topography

Results
- Opalescent samples are used for initial testing of nanopore removal methods.
- If a method works on opaque samples, it is attempted on transparent samples.

Surface Characterization
- Sample images provided are from opaque samples because there is negligible difference in appearance of nanoporous regions between opaque or transparent samples.
- TiO$_2$ nanotubes are characterized by completely enclosed by dense TiO$_2$ and are in a non-uniform pattern.
- TiO$_2$ nanotubes are characterized by a pore region separated by thin TiO$_2$ walls separated by intermittent void space.

Increased Anodization Time
- Increased anodization time subjects the nanopore layer to field-assisted chemical dissolution, which eventually leads to complete removal of nanotubes and exposure of nanopores.
- This method is successful on opaque samples, but due to the thinness of the titanium layer on transparent samples, too much titanium is often etched away causing nanotube delamination.

Extended Fluorine exposure
- While increasing the anodization time was too aggressive, it was thought that increasing the sample’s exposure to fluorine would etch away the nanoporous surface.
- After anodization, current was turned off while the sample remained in the housing with the magnetic stir bar spinning at 600 rpm for one hour.
- SEM shows no change in surface morphology with nanopores still present.

RF Plasma Etching
- Anodizing samples for an increased period of time worked for the opaque samples, but due to a lack of titanium on the glass surface caused total nanotube delamination of tubes on transparent samples.
- Two-step anodization was tested with the hypothesis that if the initial barrier layer was formed and then removed (by sonication), nanotubes could be successfully fabricated, minus that initial layer.
- This method has so far only been tested on opaque samples.
- RF plasma etching, previously described, had inconsistent nanopore removal, and in some areas no removal.
- Initial TiO$_2$ nanopore removal has been unsuccessful, but new methods have been proposed based on initial findings and can be found in future work.

Conclusion
- Funding for this project was provided by the National Science Foundation, Grant number DMR-1460912. Thanks to Dr. Grant Crawford for his teaching and guidance. Thank you to SDSMT & Master’s candidate Jevin Meyerink and Sturgis Brown High School student Holly Gerberding for their collaboration. Thank you to Dr. Kustas in the AMP center for providing PVD samples and to Dr. Boysen for help with communication and writing. A special thanks to the staff at SDSMT for their help and cooperation.

Future Work
- Perform a two-step anodization where the potential is reduced in increments to slow nanotube formation, but cause chemical dissolution of the nanopore region through prolonged exposure to electrolyte.
- Surface characterization by using SEM.

Acknowledgements

References
[4] SEM images provided by Jevin Meyerink