

Introduction

In these experiments, Aluminum alloy 6022 was friction stir spot welded to CR-EG60G60G-E Steel using a refill friction stir spot welding technique and scribe technology

Figure 1: Friction **Stir Spot weld using** sleeve plunge sequence

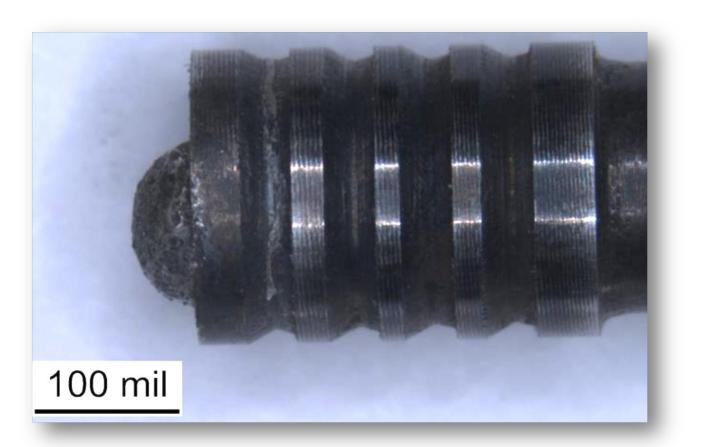


Figure 2: Pin of tool with laser deposited "scribe" **Courtesy of Todd Curtis**

Background

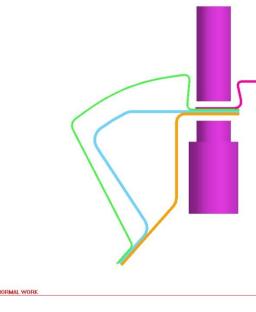
- Friction Stir Spot Welding is a solid-state welding technique that is able to bond materials resistant to traditional welding techniques
- FSW is a technique that can form strong bonds between aluminum and steel that are very difficult to weld together due to the differences in their mechanical properties
- Refill Friction Stir Spot welding is a method of FSSW that fills in the keyhole left by traditional FSSW during the welding sequence.

Broader Impact

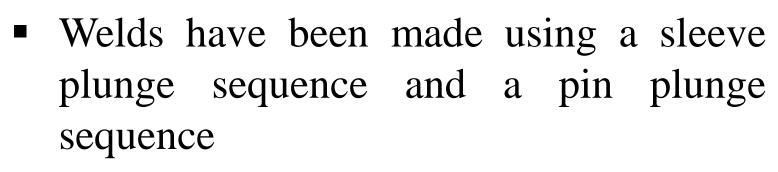
- One main goal in current automotive manufacturing is increasing the fuel economy of vehicles
- One way to increase fuel economy is to reduce the weight of vehicles by replacing steel structural components with components made of a material with a higher strength to weight ratio, namely Aluminum and Magnesium Alloys
- FSSW is also attractive to industry because it consumes less energy other welding techniques and generally requires no than pretreatments or special environments

Figure 3: Example of Aluminum and Magnesium Alloys used in cars to reduce weight http://boronextrication.com/files/2012/05/2010_Volvo_V60_Body_Structure_Safety_Cag e_Extrication_UHSS_Boron.jpg

the sticking of the tool to the material **Acknowledgements:** gaivanized steel This work was made possible by the National Science Foundation REU Back to the Future Site DMR-1157074 Thanks to Drs. West and Jasthi, to Mr. Todd Curtis, to the other staff of the SDSM&T AMP Center, and to General Motors for supplying the materials used.


Dissimilar Friction Stir Spot Welding of Aluminum to Steel for use in the Automotive Industry Kariah Kurtenbach (South Dakota State University)

Faculty Advisors: Dr. Bharat Jasthi, Dr. Michael West


- To investigate the feasibility of using laser deposited tools to successfully weld Al to steel using friction stir spot welding techniques for automotive applications
- To optimize processing parameters to achieve a strong bond and evaluate the mechanical properties and microstructure of welds

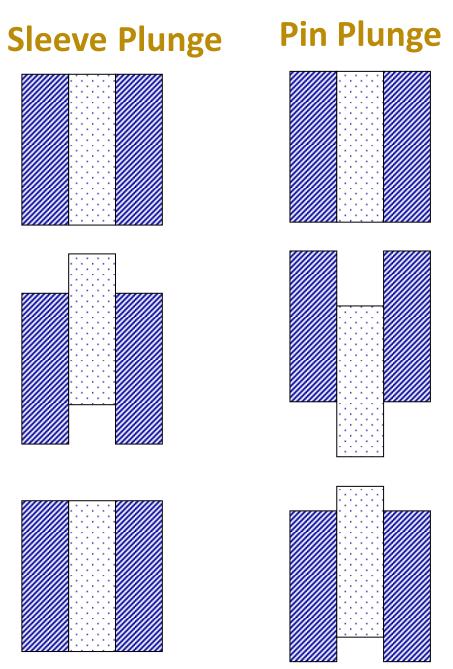
Objectives

Figure 4: Roof joint part to be **Friction Stir Welded Courtesy of GM**, provided by Todd Curtis

Procedures

- A laser deposition of Tungsten Carbide (WC) in a nickel matrix mixed up the steel during the pin plunge sequence while the sleeve plunge sequence did not touch the steel
- Welds were tensile tested
- Macrographs were taken and an SEM analysis was performed

- These tests were used to:
 - Analyze the formation of intermetallic compounds
 - Observe the performance of the laser deposition
 - Determine the effect of the zinc coating on the galvanized steel
- Table 1: Results table of the tensile tests performed on spot welds


Weld type	Ultimate tensile strength	Stand
Sleeve plunge -	618 ± 12 lbf	2.75 ±
galvanized steel		
Sleeve plunge -	533 ± 15lbf	2.37 ±
uncoated steel		
Pin Plunge - uncoated	350 ± 26 lbf	1.56 :
steel		
Pin plunge -	Welds were not completed o	
galvanized steel	the sticking of the tool to the	

South Dakota State University

Results

Figure 6: Simplified Welding Sequences

- lard Deviation
- ± 0.06kN
- ± 0.068kN
- ± 0.12kN
- or tested due to

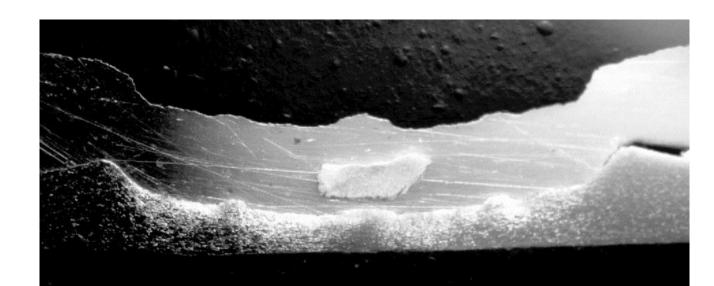
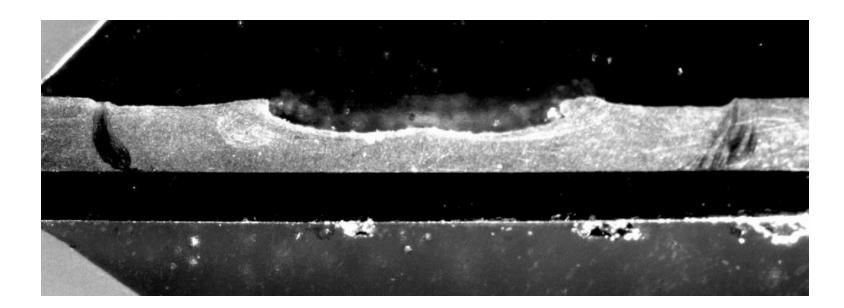
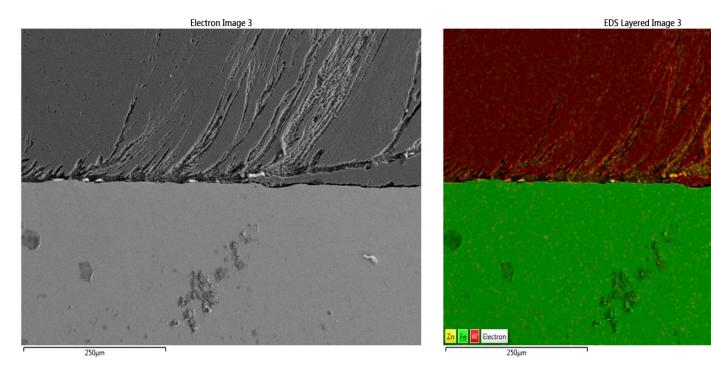
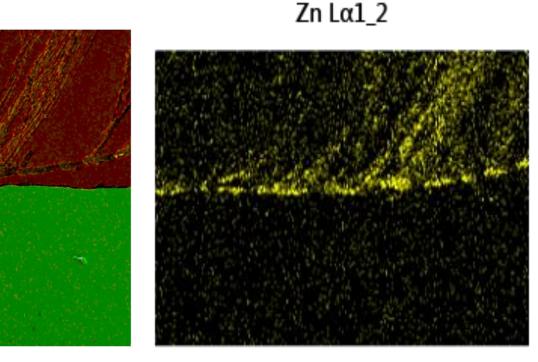



Figure 8 : Macro of the cross section of a weld made using the sleeve plunge weld sequence

- As seen in Table 1, the welds made with the galvanized steel could bear a higher shear load than those welds made using the uncoated steel although there were more sticking problems with the galvanized steel
- The laser deposition of WC on the pin did stir up the steel as can be seen by the mass of steel in the aluminum sheet in figure 7
- An intermetallic layer greater than 500nm thickness could not be detected in the Scanning Electron Microscope (SEM) analysis




Figure 9 : Energy Dispersive Spectroscopy (EDS) image of galvanized sleeve plunge

Future Work

- To further study the effect of the zinc coating on the galvanized steel on welding parameters and performance
- To adjust the location of and material used in the laser deposition in an effort to increase weld strength and eliminate the problem with sticking
- To continue making welds and adjusting parameters to find the best combination and the strongest welds

Figure 7 : Macro of the cross section of a weld made using the pin plunge weld sequence

