

Laser deposition of refractory highentropy alloy NbMoTaW

Gabrielle Martin¹, Dr. Bharat Jasthi², Dr. Michael West², James Tomich²

¹University of Alabama – Birmingham, ²South Dakota School of Mines and

Introduction

- High entropy alloys (HEAs) are systems with four or more principle elements of 5-35 atomic % composition each
- Only became a focus of research in 2004
- Potential for superior properties compared to traditional alloys – could be applied to novel applications
- Laser deposition is a fast, cheap way to enhance a part

Objectives

- Develop parameters for successful laser deposition of NbMoTaW
- Employ characterization and properties testing techniques to determine how the HEA compares to common industry alloys

Methods

- Two substrates were chosen:
 A36 steel and pure nickel
- An equimolar mixture of Nb,
 Mo, Ta, and W powders was
 made and shaken by hand for 30
 minutes
- Three beads were deposited on a nickel plate to provide contrast
- Laser power was selected as the first parameter to be developed
- Five beads of varying wattages
 were deposited on the A-36
 steel
- After a visual analysis, 110W and 140W were determined to be the best beads

Laser deposition

Five more deposits were made between 110W and 155W

Wattage of A-36 Steel Depositions (W)

Sample 1	50	80	110	140	171
Sample 2	110	121	133	144	155

 The samples were subjected to hardness testing, optical microscopy and scanning electron microscope (SEM) analysis to check for defects and determine depth of penetration, percent dilution, mixing quality, and hardness.

Penetration Depth and Percent

When correlated to laser power:

Results

D3 : 63.47 µm D1 : 289.40 µm A2: 45161.00 µm² D2 : 252.97 µm

$\% Dilution = \frac{Base III ea}{Base Area + Bead Area} * 100$

Qualitatively, the penetration depth was promising

Penetration depth may display a slight upward trend

Percent dilution shows no statistically significant correlation

SEM Composition Analysis

were used to do characterize the elemental distribution (left).Composition maps were made of

Energy dispersive x-ray spectroscopy

- each area (right). The transition from substrate to diffusion zone is gradual, which will lead to a more stable deposition. The mixture is largely homogeneous with the exception of a slight segregation ring between tantalum and molybdenum.
- Additionally, backscattering was used to look for intermetallics, which often form angular phases. None were detected.

Nickel Deposit #1 2000x Magnification

Nodules of pure
tungsten regularly
formed in the
deposits. Tantalum
and molybdenum
nodules were also
found occasionally.

Alag = 500 X 10 µm WD = 8.5 mm EHT = 20.00 kV Signal A = AsB Date :24 Jul 2016 Time :14:44:50 Chamber Status = Pumping (HV)

110 W 500x Magnification

The nodules caused a tungsten deficiency in the well-mixed zones.

Consequently, no equimolar regions were found.

Results Cont. Optical Microscopy

- Severe cracking in deposits made on steel
- Only minor cracks in deposits made on nickel possibly due to greater diffusivity and ductility in the nickel's FCC matrix
- The penetration areas are angular instead of rounded, which results in a smaller interface area and decreased stability of the deposit

.0x

133W 10x Magnification

Hardness Testing

Nanoindentation was performed on 110, 121, and 133 W to determine the hardness and modulus of elasticity.

Microindentation was used to find the hardness of the nickel deposits. The substrate values have been included for comparison.*

Hardness and Elastic Modulus Values of Deposits and Substrates

Material	Hardness (HV)	Modulus (GPa)	
110 W Deposit**	1509	262	
121 W Deposit	931	245	
133 W Deposit	992	239	
Nickel Deposit	766		
Nickel*	194	205	
A36 Steel*	148	200	

**The values for the 100 W deposit are believed to be an error possibly caused by accidentally testing one of the segregated nodules instead of the more homogeneous material.

Conclusions

- Sufficient penetration depth was achieved
- Pure metal deposits suggest powder did not fully melt
- Decreased beam focus could lead to a rounder interface
- Hardness and modulus results suggest industrial viability

Acknowledgemen

This research was made possible by the National Science Foundation REU Back to the Future Site: DMR-1460912. Special thanks to Dr. Christian Widener for generously allowing use of the Arbegast Materials Laboratory and to South Dakota School of Mines for hosting this program.